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CM Analysis

A systematic framework for generating ideal operators for
Hamiltonian Eigenstates

Require a basis of operators: {χi} ; i ∈ [1, N ]

Calculate set of cross-correlation functions

Gij(t, ~p; Γ) =
∑
~x

e−i~p·~xtr(Γ〈Ω|χi(x)χ̄j(0)|Ω〉)

=
∑
α

e−Eα(~p) tZαi (~p)Z̄αj (~p)tr

(
Γ(/p+mα)

2Eα(~p)

)
where Zαi , Z̄αj are the couplings of sink operator (χi) and source
operator (χ̄j) to the state α
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CM Analysis (cont)

Desire N optimised sink (φα) and source (φ̄α) operators

Ideally, we want these operators to satisfy

〈Ω |φβ |Mα, p, s 〉 = δαβZα(~p)

√
Mα

Eα(~p)
u(p, s)

use our basis of operators to construct these new operators

φ̄α(x, ~p) =
N∑
i=1

uαi (~p)χ̄i(x)

φα(x, ~p) =

N∑
i=1

vαi (~p)χi(x)


optimal coupling to state |Mα, p, s 〉
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CM Analysis (cont)

Knowledge of the time dependence provides the recurrence relation

Gij(t+ δt, ~p ; Γ)uαj = e−Eα(~p ) δt Gij(t, ~p ; Γ)uαj

Thus, the desired values for uαj and vαi are given by

CM Eigenvalue Equation

[G−1(t0, ~p; Γ)G(t0 + δt, ~p; Γ) ]ij u
α
j (~p) = e−Eα(~p)δt uαj (~p)

vαi (~p) [G(t0 + δt, ~p; Γ)G−1(t0, ~p; Γ) ]ij = e−Eα(~p)δt vαi (~p)

Using vαi (~p), uαj (~p) we are able to project out the correlation function
for the state |Mα, p, s 〉

Gα(t, ~p; Γ) = vαi (~p)Gij(t, ~p; Γ)uαj (~p)
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CM Analysis for 3pt-functions

The eigenvectors derived from the two-point analysis can be used to
project out the three-point function

The key is to ensure that the eigenvector corresponds to the
momentum to be projected at the source / sink

Gα(~p ′, ~p ; t2, t1; Γ′) = vαi (~p ′)Gij(~p ′, ~p ; t2, t1; Γ′)uαj (~p ) .

With the desired state now isolated, one simply uses the projected
correlation functions in the ratio to extract the matrix element.

In this work we have used the following ratio,

Rα(~p ′, ~p ; Γ′,Γ) =

√
Gα(~p ′, ~p ; t2, t1; Γ′)Gα(~p , ~p ′; t2, t1; Γ′)

Gα(~p , t2; Γ)Gα(~p ′, t2; Γ)
.
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Our operator basis

It is important to use a basis that has good overlap with the states of
interest

We choose to local operators of varying source and sink widths

Use of varying widths allows us to separate radial excitations

Multi-particle states couple poorly, but through mixing of eigenstates
they are still present in the correlator

In particular, we use 4 levels of gauge invariant Gaussian smearing at
the source and sink with smearing fraction α = 0.7.1

Table : The rms radii for the various levels of smearing considered in this work.1

Sweeps of smearing rms radius (fm)

16 0.216
35 0.319

100 0.539
200 0.778
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Our operator basis (cont)

We use both χ1 and χ2

χ1(x) = εabc(uT a(x)Cγ5 d
b(x))uc(x)

χ2(x) = εabc(uT a(x)C db(x)) γ5 u
c(x)

This gives us 8 operators resulting in an 8 × 8 Correlation Matrix

We perform a single CM analysis and use these eigenvectors to
project out the eigenstate correlators for all times slices

For our variational parameters, we use t0 = 18 and δt = 2.1

For positive parity states we use the projector:

Γ+
4 =

(
I 0
0 0

)
For negative parity states we use the projector2:

Γ−4 = −γ5Γ+
4 γ5
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Tracking eigenstates

Between momenta, it is important to ensure that we order
eigenvectors consistently

To do this we make use of the tracking methods developed to track
eigenstates across mπ.1

Need to symmetrise and normalise our correlators

In doing this, we are able to construct orthonormal eigenvectors wαj ,
related to our uαi through

wαj (~p ) = G1/2
ij (t0, ~p ; Γ)uαj (~p )

We can identify corresponding eigenvectors across momenta as those
with

wα(~p ) · wβ(0) ≈ δαβ
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Nucleon Matrix Elements

Both positive and negative parity nucleon electromagnetic matrix
elements can be decomposed into the standard Pauli-Dirac form

〈N, p′, s′|Jµ|N, p, s〉 = ū(p′, s′)

[
γµF1(Q

2) + i
σµνqν
2M

F2(Q
2)

]
u(p, s)

Sachs Form Factors are related to these via

GE(Q2) = F1(Q
2)− Q2

4M2
F2(Q

2)

GM (Q2) = F1(Q
2) + F2(Q

2)
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Nucleon Matrix Elements (cont)

SST-propagators are evaluated with the inversion done through the
current

We use a conserved vector current, with ~q = 2π
L x̂

We evaluate the three-point functions with ~p = 0 and ~p ′ = ~q

The ratios used to extract the form factors GE and GM are

GE(Q2) =

(
2Eq

Eq +M

)1/2

R(~q, 0; Γ±4 ,Γ
±
4 ;µ = 4)

GM (Q2) =
Eq +M

|~q|

(
2Eq

Eq +M

)1/2

R(~q, 0; Γ±2 ,Γ
±
4 ;µ = 3)

where

Γ+
i =

(
σi 0
0 0

)
and Γ−i = −γ5Γ+

i γ5

Benjamin Owen (Adelaide Uni) June 26th, 2014 11 / 39



Nucleon Matrix Elements (cont)

SST-propagators are evaluated with the inversion done through the
current

We use a conserved vector current, with ~q = 2π
L x̂

We evaluate the three-point functions with ~p = 0 and ~p ′ = ~q

The ratios used to extract the form factors GE and GM are

GE(Q2) =

(
2Eq

Eq +M

)1/2

R(~q, 0; Γ±4 ,Γ
±
4 ;µ = 4)

GM (Q2) =
Eq +M

|~q|

(
2Eq

Eq +M

)1/2

R(~q, 0; Γ±2 ,Γ
±
4 ;µ = 3)

where

Γ+
i =

(
σi 0
0 0

)
and Γ−i = −γ5Γ+

i γ5

Benjamin Owen (Adelaide Uni) June 26th, 2014 11 / 39



Nucleon Matrix Elements (cont)

SST-propagators are evaluated with the inversion done through the
current

We use a conserved vector current, with ~q = 2π
L x̂

We evaluate the three-point functions with ~p = 0 and ~p ′ = ~q

The ratios used to extract the form factors GE and GM are

GE(Q2) =

(
2Eq

Eq +M

)1/2

R(~q, 0; Γ±4 ,Γ
±
4 ;µ = 4)

GM (Q2) =
Eq +M

|~q|

(
2Eq

Eq +M

)1/2

R(~q, 0; Γ±2 ,Γ
±
4 ;µ = 3)

where

Γ+
i =

(
σi 0
0 0

)
and Γ−i = −γ5Γ+

i γ5

Benjamin Owen (Adelaide Uni) June 26th, 2014 11 / 39



Nucleon Matrix Elements (cont)

SST-propagators are evaluated with the inversion done through the
current

We use a conserved vector current, with ~q = 2π
L x̂

We evaluate the three-point functions with ~p = 0 and ~p ′ = ~q

The ratios used to extract the form factors GE and GM are

GE(Q2) =

(
2Eq

Eq +M

)1/2

R(~q, 0; Γ±4 ,Γ
±
4 ;µ = 4)

GM (Q2) =
Eq +M

|~q|

(
2Eq

Eq +M

)1/2

R(~q, 0; Γ±2 ,Γ
±
4 ;µ = 3)

where

Γ+
i =

(
σi 0
0 0

)
and Γ−i = −γ5Γ+

i γ5

Benjamin Owen (Adelaide Uni) June 26th, 2014 11 / 39



Ensemble Details

For this calculation we are working with the PACS-CS (2+1)-flavour
Full QCD ensembles1 made available through the ILDG

Iwasaki gauge action and pre-conditioned Wilson-Clover quark action

These are 323 × 64 lattices with β = 1.9, corresponding to a physical
lattice spacing of 0.0907(13) fm

There are five light quark-masses

Table : Ensemble details

mπ (MeV) ncfgs nsrcs/cfg nsrcs

702 350 2 700
570 350 2 700
411 350 2 700
296 350 2 700
156 200 6 1200
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Positive Parity Spectrum
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N ∗(1/2
+) wave function1 – mπ = 570 MeV
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N ∗(1/2
+) wave function1 – mπ = 156 MeV
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Negative Parity Spectrum
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LogG

Multi-particle states couple weakly to our choice of interpolators and
so their contribution is only significant in the tail of the correlator.1

We consider logG of our projected 2pt-correlators to identify regions
where multi-particle contributions are suppressed relative to the
nucleon excitation

On going work will broaden our basis to include multi-particle
operators

Benjamin Owen (Adelaide Uni) June 26th, 2014 17 / 39
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Projected Correlator for the second 1/2
− eigenstate:

mπ = 570 MeV

Want linear behaviour in logG around and after ts = 21
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Projected Correlator for the second 1/2
− eigenstate:

mπ = 296 MeV

Want linear behaviour in logG around and after ts = 21

Benjamin Owen (Adelaide Uni) June 26th, 2014 19 / 39

16 18 20 22 24 26 28 30

-10.0

0.0

Euclidean time

lo
g

HG
L



Quark Sector Results: GE, u in p (Positive Parity)
mπ = 570 MeV
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Quark Sector Results: GE, d in p (Positive Parity)
mπ = 570 MeV
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Quark Sector Results: GM, u in p (Positive Parity)
mπ = 570 MeV
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Quark Sector Results: GM, d in p (Positive Parity)
mπ = 570 MeV
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Quark Sector Results: GE, u in p (Negative Parity)
mπ = 570 MeV
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Quark Sector Results: GE, d in p (Negative Parity)
mπ = 570 MeV

Benjamin Owen (Adelaide Uni) June 26th, 2014 25 / 39

16 18 20 22 24 26 28
0.0

0.2

0.4

0.6

0.8

1.0

t

G
E



Quark Sector Results: GM, u in p (Negative Parity)
mπ = 570 MeV
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Quark Sector Results: GM, d in p (Negative Parity)
mπ = 570 MeV

Benjamin Owen (Adelaide Uni) June 26th, 2014 27 / 39

16 18 20 22 24 26 28
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

t

G
M

HΜ
N

L



Comparison across m2
π

In comparing between states and different values of mπ, we need to
take into account the small difference in Q2

To facilitate a comparison, we make use of a dipole Ansatz

Gi(Q
2) =

(
Λ2

Λ2 +Q2

)2

Gi(0)

to perform a small shift in Q2

As we are using a conserved current, we are to extract Λ2 from the
the Electric form factor where GE(0) = 1

For this ensemble, we choose to shift all our extracted form factors to
the common value of Q2 = 0.16 GeV2

Benjamin Owen (Adelaide Uni) June 26th, 2014 28 / 39



Comparison across m2
π

In comparing between states and different values of mπ, we need to
take into account the small difference in Q2

To facilitate a comparison, we make use of a dipole Ansatz

Gi(Q
2) =

(
Λ2

Λ2 +Q2

)2

Gi(0)

to perform a small shift in Q2

As we are using a conserved current, we are to extract Λ2 from the
the Electric form factor where GE(0) = 1

For this ensemble, we choose to shift all our extracted form factors to
the common value of Q2 = 0.16 GeV2

Benjamin Owen (Adelaide Uni) June 26th, 2014 28 / 39



Comparison across m2
π

In comparing between states and different values of mπ, we need to
take into account the small difference in Q2

To facilitate a comparison, we make use of a dipole Ansatz

Gi(Q
2) =

(
Λ2

Λ2 +Q2

)2

Gi(0)

to perform a small shift in Q2

As we are using a conserved current, we are to extract Λ2 from the
the Electric form factor where GE(0) = 1

For this ensemble, we choose to shift all our extracted form factors to
the common value of Q2 = 0.16 GeV2

Benjamin Owen (Adelaide Uni) June 26th, 2014 28 / 39



Comparison across m2
π

In comparing between states and different values of mπ, we need to
take into account the small difference in Q2

To facilitate a comparison, we make use of a dipole Ansatz

Gi(Q
2) =

(
Λ2

Λ2 +Q2

)2

Gi(0)

to perform a small shift in Q2

As we are using a conserved current, we are to extract Λ2 from the
the Electric form factor where GE(0) = 1

For this ensemble, we choose to shift all our extracted form factors to
the common value of Q2 = 0.16 GeV2

Benjamin Owen (Adelaide Uni) June 26th, 2014 28 / 39



Quark Sector Results: GE, u in p (Positive Parity)
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Quark Sector Results: GE, d in p (Positive Parity)
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Quark Sector Results: GE, u in p (Negative Parity)
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Quark Sector Results: GE, d in p (Negative Parity)
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GE summary

In the positive parity sector, at the heavier masses, GE for the first
excited state is smaller than the ground state consistent with the
expectation that the state is larger

At the lighter masses, GE for the excited states appears to be
enhanced

I An interesting possibility is that we have important ∆++, π− dressings

1√
2
|∆++π−〉 − 1√

3
|∆+π0〉+

1√
6
|∆0π+〉

which would lead to accumulation of positive charge at the origin
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Quark Sector Results: GM, u in p (Positive Parity)
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Quark Sector Results: GM, d in p (Positive Parity)
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Quark Sector Results: GM, u in p (Negative Parity)
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Quark Sector Results: GM, d in p (Negative Parity)
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GM summary

In the negative parity sector, we observe the first and second
excitations have differing signs for the single quark sector

This is much like the difference in quark sectors observed between the
p and ∆+

This is consistent with the states having differing spin configurations

I First excitation appears consistent with s = 1
2 , l = 1 to give j = 1

2
I Second excitation appears consistent with s = 3

2 , l = 1 to give j = 1
2
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Conclusions and Future Work

Demonstrated how correlation matrix methods allow us to probe
excited state structure

Obtained quality plateaus in both the positive parity and negative
parity sectors

Observed interesting enhancement in electric form factor at lighter
masses

Observed qualitative difference between the quark sectors of the first
and second negative parity excitations

Attempt to access smaller values of Q2 by using boosts

Examine the transition amplitudes for ground state nucleon to both
positive and negative parity excitations
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